Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Infect Control Hosp Epidemiol ; 42(11): 1318-1326, 2021 11.
Article in English | MEDLINE | ID: covidwho-1575888

ABSTRACT

OBJECTIVE: Due to shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic, it is necessary to estimate the number of N95s required for healthcare workers (HCWs) to inform manufacturing targets and resource allocation. METHODS: We developed a model to determine the number of N95 respirators needed for HCWs both in a single acute-care hospital and the United States. RESULTS: For an acute-care hospital with 400 all-cause monthly admissions, the number of N95 respirators needed to manage COVID-19 patients admitted during a month ranges from 113 (95% interpercentile range [IPR], 50-229) if 0.5% of admissions are COVID-19 patients to 22,101 (95% IPR, 5,904-25,881) if 100% of admissions are COVID-19 patients (assuming single use per respirator, and 10 encounters between HCWs and each COVID-19 patient per day). The number of N95s needed decreases to a range of 22 (95% IPR, 10-43) to 4,445 (95% IPR, 1,975-8,684) if each N95 is used for 5 patient encounters. Varying monthly all-cause admissions to 2,000 requires 6,645-13,404 respirators with a 60% COVID-19 admission prevalence, 10 HCW-patient encounters, and reusing N95s 5-10 times. Nationally, the number of N95 respirators needed over the course of the pandemic ranges from 86 million (95% IPR, 37.1-200.6 million) to 1.6 billion (95% IPR, 0.7-3.6 billion) as 5%-90% of the population is exposed (single-use). This number ranges from 17.4 million (95% IPR, 7.3-41 million) to 312.3 million (95% IPR, 131.5-737.3 million) using each respirator for 5 encounters. CONCLUSIONS: We quantified the number of N95 respirators needed for a given acute-care hospital and nationally during the COVID-19 pandemic under varying conditions.


Subject(s)
COVID-19 , Pandemics , Health Personnel , Hospitals , Humans , Masks , N95 Respirators , Pandemics/prevention & control , SARS-CoV-2 , United States/epidemiology
2.
Vaccine ; 39(31): 4335-4342, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1274451

ABSTRACT

INTRODUCTION: Single-dose rotavirus vaccines, which are used by a majority of countries, are some of the largest-sized vaccines in immunization programs, and have been shown to constrain supply chains and cause bottlenecks. Efforts have been made to reduce the size of the single-dose vaccines; however, with two-dose, five-dose and ten-dose options available, the question then is whether using multi-dose instead of single-dose rotavirus vaccines will improve vaccine availability. METHODS: We used HERMES-generated simulation models of the vaccine supply chains of the Republic of Benin, Mozambique, and Bihar, a state in India, to evaluate the operational and economic impact of implementing each of the nine different rotavirus vaccine presentations. RESULTS: Among single-dose rotavirus vaccines, using Rotarix RV1 MMP (multi-monodose presentation) led to the highest rotavirus vaccine availability (49-80%) and total vaccine availability (56-79%), and decreased total costs per dose administered ($0.02-$0.10) compared to using any other single-dose rotavirus vaccine. Using two-dose ROTASIIL decreased rotavirus vaccine availability by 3-6% across each supply chain compared to Rotarix RV1 MMP, the smallest single-dose vaccine. Using a five-dose rotavirus vaccine improved rotavirus vaccine availability (52-92%) and total vaccine availability (60-85%) compared to single-dose and two-dose vaccines. Further, using the ten-dose vaccine led to the highest rotavirus vaccine availability compared to all other rotavirus vaccines in both Benin and Bihar. CONCLUSION: Our results show that countries that implement five-dose or ten-dose rotavirus vaccines consistently reduce cold chain constraints and achieve higher rotavirus and total vaccine availability compared to using either single-dose or two-dose rotavirus vaccines.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Benin , Humans , Immunization Programs , India , Infant , Mozambique , Rotavirus Infections/prevention & control , Vaccines, Attenuated
3.
Am J Prev Med ; 60(5): 605-613, 2021 05.
Article in English | MEDLINE | ID: covidwho-1037161

ABSTRACT

INTRODUCTION: During a pandemic, there are many situations in which the first available vaccines may not have as high effectiveness as vaccines that are still under development or vaccines that are not yet ready for distribution, raising the question of whether it is better to go with what is available now or wait. METHODS: In 2020, the team developed a computational model that represents the U.S. population, COVID-19 coronavirus spread, and vaccines with different possible efficacies (to prevent infection or to reduce severe disease) and vaccination timings to estimate the clinical and economic value of vaccination. RESULTS: Except for a limited number of situations, mainly early on in a pandemic and for a vaccine that prevents infection, when an initial vaccine is available, waiting for a vaccine with a higher efficacy results in additional hospitalizations and costs over the course of the pandemic. For example, if a vaccine with a 50% efficacy in preventing infection becomes available when 10% of the population has already been infected, waiting until 40% of the population are infected for a vaccine with 80% efficacy in preventing infection results in 15.6 million additional cases and 1.5 million additional hospitalizations, costing $20.6 billion more in direct medical costs and $12.4 billion more in productivity losses. CONCLUSIONS: This study shows that there are relatively few situations in which it is worth foregoing the first COVID-19 vaccine available in favor of a vaccine that becomes available later on in the pandemic even if the latter vaccine has a substantially higher efficacy.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/epidemiology , Computer Simulation , Humans , Pandemics , United States/epidemiology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL